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Approximation of x" by Reciprocals of Polynomials
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We consider the problem of approximating x" by reciprocals of
polynomials on the interval [0, 1]. We derive precise estimates for

p’iggm X" = 1/pm(*)lf0, 11

where IT,, denotes the set of all algebraic polynomials of degree at most m
and where || - ||;,., denotes the supremum norm on [a, b]. For the case
m = n we show that

1|n
(it = Up ) 27764 ()

This sharpens estimates derived by Newman in [2] and answers question 7
posed by Reddy in [4]. Our method is to first solve an easier approximation
problem using known L? results. This is similar to the approach used by
Schénhage [5] to approximate e * on [0, ) and by Rahman and
Schmeisser [3] to approximate x~" on [1, o).

Our main result is the following:

THEOREM 1.  There exists p,, € I1,, so that

4.72) n (n+m)! (3n—2)!
Cn—1D"7 m=D'Gnt+m—1N"

f|x" — I/Pm(x)”[o, s

For each ¢,, € I1,,

(0.18) (n+ m)! (3n)!
Qi+ D)7 =) @ntm+ 1)

[ x" — I/Qm(x)”[o. 12
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The related least-squares result is

THEOREM 2. [1,p.196] Let n,aq,..,a, be distinct positive real
numbers. The least-squares distance on [0, 1] from x" to the subspace
spanned by {x®,..., x*m} is

l m |n‘_al|

V2n+1 ,1:[0 n+a;+1°

This result allows us to deduce the supremum norm bounds in the next
theorem.

THEOREM 3. There exists p,, € I1,, so that

n (n+m)! 3n—2)!
Cn—1D)"7 =D GBn+m—1)"

szn “P(x) — x"H[o, MRS

For each q,,€11,,,

1 (n+ m)! (3n)!
Cn+ D7 m=1D)@n+m+ 1)

”xz" G m(X) — xn“[o. 1=

Proof. The proof is identical to that used in deducing the supremum
norm version of Miintz’s theorem from the L? version (see [1, p. 197]). The
lower bound is immediate from Theorem 2 with

a;=2n+i fori=0, 1,..., m.

To derive the upper bound we observe, as in [1, p. 198], that

2n+m . 1 2n+m . 2 1/2
x"— Y A <(j "t — N A P! dt> .
J=2n [0,1] 0 j=2n
We now apply Theorem 2 with
a;=2n—1+1i for i=0,l1...,m.

The remainder of the paper is concerned with deriving Theorem 1 from
Theorem 3. We need the following somewhat technical lemmas.

LEMMA 1. Let a >0 and let 1/p,, be the best uniform approximation to
x" on [a,b] from the set of reciprocals of elements of II,,. Then p,, is
decreasing on [0, a].
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Proof. We know |[1,p. 161] that 1/p,, interpolates x" at m + 1 points on
[a, b]. By Descartes’ rule of signs, since 1 —x"-p, has m+ 1 zeroes on
[a, b], we deduce that p,(x) = ax™ + lower order terms, where

a=(—1)"|a|#0.

Thus, there exist a < a, < --- € a,, < b so that

m

(145" pu@)) =" '(n+ m)a [ ] (x—a)

i=1

and
(X« Pu(X) + 1py(x)) = (n + m)(=1)"|a| [ ] (x —a)). @)
i=1
Suppose that there exist points ¢, and ¢, with 0<¢,<¢, <@, so that

Pn(c)=p,(c,)=0. Then, from (2) it follows that

pm(cl) <pm(cl) <pm(0) (3)

We note that p,(a,) > 0 and hence, by (2), p,.(a,) < 0. Thus, the maximum
of p,, on the interval [0, a,] occurs at 0. It also follows from the above that
the only way p,, can have a local max. or min. in (0, a,) is if, in fact, p/, has
two zeros 0<d, <d,<ea, so that p,(d,)<p,(d,). This, however,
contradicts (3) and we see that p,, must be decreasing on [0, ¢,].

LEMMA 2. If there exists p,, € II,, so that

”(pm(x) —x_") x2n||[p+p/n. 1] <pn

then there exists q,, € I1,, so that

X" — 1/@,(xX) |0,y < (2 + ) p".

Proof. For x € [p+p/n, 1]

_ P 1
x| —
|pm(x) X | (p +p/n)nxn = 2x™

and

X" pp(x) 2 3.
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Thus,

| x" — l/pm(x)“[p+p/n, 1]

=H@Aﬂ—fﬁ(—fi—)

x" -pm()C) {p+o/n, 1]

< 20" (4)

Suppose that 1/g,, is the best approximation to x" on [p + p/n, 1] from the
reciprocals of elements of I7,,. From the previous lemma we see that g, is
decreasing on [0, p + p/n| and hence,

o+ oY)

1
" < max, [~
”x /qm(x)”[O.p+o/nl max (q,,,(/) +p/n)

From (4) and the above we have

1
. —
oo <
2"+ (p+p/n)"'<2+e)p"

= 1/, (Xl 4 o,y + (0 +p/1)"

and
%" = 1/, (®)llj0, 1y < (2 + €) o™

LeEMMA 3. If there exists p,, € II,, so that

[|x?" 'Pm(x)“xn”[p+p/n. n<p”

then there exists q,, € II,, so that
2" - gu(x) — x"[lo, 1y L€ P".

Proof. Let g, € I1,, satisfy
1" @) = X"l 4 pymo1y = pmeig 152"+ P = X" 4 11 -
As in the proof of Lemma 1, if g,(x) =ax™ + -+, then

(" gn)) =X+ my el [] ) @€ lp+pn 1,
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It follows that x" - g,,(x) is non-decreasing and positive on [0, p + p/n] and
that

n p
X"+ @m(x) — ljo, ps ormy < MaX <l(p+—p/n)n) <L

We complete the result by noting that this shows that

1%*" 4%y = X"lli0, 4 oy < @+ p/M)" <€ p".

Proof of Theorem 1. Theorem 3 guarantees the existence of p,, € II,, so
that

n (n+m!@n—-2)t
Q=17 (n=D!'@n+m—1)!

“xln Pl(x™) _x"n[o. <

Thus,

122" - (%) = X" [l15.4 70,17 < 0"
and by Lemma 2, there exists g,, € I1,, so that

X" = 1/gm(X) o, 1y < (2 + €) 0"

We now establish the lower bound. We know by Theorem 3, for all p,, € 11,

1 (n +m)! (3n)!
2n — x" > . = p"
1% Pm(X) = X" 0, 1) Qn+ D)7 (n—1D!'Gn+m+ 1)

By Lemma 3,

pn
13 ) = X 11 > 5)

This, as we shall show, finishes the proof by implying that

n

p
flx" — l/pm(x)”[p+p/n, = Z_e .
This final inequality can be seen as follows.
Suppose, for n > 1, that
pn

%" = 1/DmC) lip 4 orm, 1y < %"
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Then, for x € [p + p/n, 1],

1 5 " p”>x"
P " 267

and
x" . pa(x) <2
This, however, contradicts (5) by implying that

||x2" * Pl X) —x"||la+p/n.u
= ” (X" - l/pm(x))(xn * pm(x)||[p+p/n, 1]

n
<Z.
e
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