Approximation of x^{n} by Reciprocals of Polynomials

Peter B. Borwein*
Mathematical Institute, Oxford, England \dagger
Communicated by E. W. Cheney
Received May 27, 1980

We consider the problem of approximating x^{n} by reciprocals of polynomials on the interval $[0,1]$. We derive precise estimates for

$$
\inf _{p_{m} \in I_{m}}\left\|x^{n}-1 / p_{m}(x)\right\|_{[0,1]}
$$

where Π_{m} denotes the set of all algebraic polynomials of degree at most m and where $\|\cdot\|_{\{a, b]}$ denotes the supremum norm on $[a, b]$. For the case $m=n$ we show that

$$
\begin{equation*}
\left(\inf _{p_{n} \in \Pi_{n}}\left\|x^{n}-1 / p_{n}(x)\right\|\right)^{1 / n} \rightarrow 27 / 64 . \tag{1}
\end{equation*}
$$

This sharpens estimates derived by Newman in [2] and answers question 7 posed by Reddy in [4]. Our method is to first solve an easier approximation problem using known L^{2} results. This is similar to the approach used by Schönhage [5] to approximate e^{-x} on $[0, \infty)$ and by Rahman and Schmeisser [3] to approximate x^{-n} on [1, ∞).

Our main result is the following:
Theorem 1. There exists $p_{m} \in \Pi_{m}$ so that

$$
\left\|x^{n}-1 / p_{m}(x)\right\|_{[0,1]} \leqslant \frac{(4.72) n}{(2 n-1)^{1 / 2}} \cdot \frac{(n+m)!(3 n-2)!}{(n-1)!(3 n+m-1)!} .
$$

For each $q_{m} \in \Pi_{m}$

$$
\left\|x^{n}-1 / q_{m}(x)\right\|_{[0,1]} \geqslant \frac{(0.18)}{(2 n+1)^{1 / 2}} \cdot \frac{(n+m)!(3 n)!}{(n-1)!(3 n+m+1)!} .
$$

[^0]The related least-squares result is
Theorem 2. [1, p. 196] Let $n, \alpha_{0}, \ldots, \alpha_{m}$ be distinct positive real numbers. The least-squares distance on $[0,1]$ from x^{n} to the subspace spanned by $\left\{x^{\alpha_{0}, \ldots,}, x^{\alpha_{m}}\right\}$ is

$$
\frac{1}{\sqrt{2 n+1}} \prod_{i=0}^{m} \frac{\left|n-\alpha_{i}\right|}{n+\alpha_{i}+1}
$$

This result allows us to deduce the supremum norm bounds in the next theorem.

Theorem 3. There exists $p_{m} \in \Pi_{m}$ so that

$$
\left\|x^{2 n} \cdot p_{m}(x)-x^{n}\right\|_{[0,1]} \leqslant \frac{n}{(2 n-1)^{1 / 2}} \cdot \frac{(n+m)!(3 n-2)!}{(n-1)!(3 n+m-1)!}
$$

For each $q_{m} \in \Pi_{m}$,

$$
\left\|x^{2 n} \cdot q_{m}(x)-x^{n}\right\|_{[0,1]} \geqslant \frac{1}{(2 n+1)^{1 / 2}} \cdot \frac{(n+m)!(3 n)!}{(n-1)!(3 n+m+1)!} .
$$

Proof. The proof is identical to that used in deducing the supremum norm version of Müntz's theorem from the L^{2} version (see [1, p. 197]). The lower bound is immediate from Theorem 2 with

$$
\alpha_{i}=2 n+i \quad \text { for } i=0,1, \ldots, m
$$

To derive the upper bound we observe, as in [1, p. 198], that

$$
\left\|x^{n}-\sum_{j=2 n}^{2 n+m} \lambda_{j} x^{j}\right\|_{[0,1]} \leqslant\left(\int_{0}^{1}\left|n t^{n-1}-\sum_{j=2 n}^{2 n+m} j \lambda_{j} t^{j-1}\right|^{2} d t\right)^{1 / 2}
$$

We now apply Theorem 2 with

$$
\alpha_{i}=2 n-1+i \quad \text { for } \quad i=0,1 \ldots, m
$$

The remainder of the paper is concerned with deriving Theorem 1 from Theorem 3. We need the following somewhat technical lemmas.

Lemma 1. Let $a>0$ and let $1 / p_{m}$ be the best uniform approximation to x^{n} on $[a, b]$ from the set of reciprocals of elements of Π_{m}. Then p_{m} is decreasing on $[0, a]$.

Proof. We know [1, p. 161] that $1 / p_{m}$ interpolates x^{n} at $m+1$ points on $[a, b]$. By Descartes' rule of signs, since $1-x^{n} \cdot p_{m}$ has $m+1$ zeroes on $[a, b]$, we deduce that $p_{m}(x)=\alpha x^{m}+$ lower order terms, where

$$
\alpha=(-1)^{m}|\alpha| \neq 0 .
$$

Thus, there exist $a \leqslant \alpha_{1} \leqslant \cdots \leqslant \alpha_{m} \leqslant b$ so that

$$
\left(-1+x^{n} \cdot p_{m}(x)\right)^{\prime}=x^{n-1}(n+m) \alpha \prod_{i=1}^{m}\left(x-\alpha_{i}\right)
$$

and

$$
\begin{equation*}
\left(x \cdot p_{m}^{\prime}(x)+n p_{m}(x)\right)=(n+m)(-1)^{m}|\alpha| \prod_{i=1}^{m}\left(x-\alpha_{i}\right) . \tag{2}
\end{equation*}
$$

Suppose that there exist points c_{1} and c_{2} with $0<c_{1}<c_{2}<\alpha_{1}$ so that $p_{m}^{\prime}\left(c_{1}\right)=p_{m}^{\prime}\left(c_{2}\right)=0$. Then, from (2) it follows that

$$
\begin{equation*}
p_{m}\left(c_{2}\right)<p_{m}\left(c_{1}\right)<p_{m}(0) . \tag{3}
\end{equation*}
$$

We note that $p_{m}\left(\alpha_{1}\right)>0$ and hence, by (2), $p_{m}^{\prime}\left(\alpha_{1}\right)<0$. Thus, the maximum of p_{m} on the interval $\left[0, \alpha_{1}\right]$ occurs at 0 . It also follows from the above that the only way p_{m} can have a local max. or min. in $\left(0, \alpha_{1}\right)$ is if, in fact, p_{m}^{\prime} has two zeros $0<d_{1}<d_{2}<\alpha_{1}$ so that $p_{m}\left(d_{1}\right)<p_{m}\left(d_{2}\right)$. This, however, contradicts (3) and we see that p_{m} must be decreasing on $\left[0, \alpha_{1}\right]$.

Lemma 2. If there exists $p_{m} \in \Pi_{m}$ so that

$$
\left\|\left(p_{m}(x)-x^{-n}\right) x^{2 n}\right\|_{[\rho+\rho / n, 1]} \leqslant \rho^{n}
$$

then there exists $q_{m} \in \Pi_{m}$ so that

$$
\left\|x^{n}-1 / q_{m}(x)\right\|_{[0,1]} \leqslant(2+e) \rho^{n} .
$$

Proof. For $x \in[\rho+\rho / n, 1]$

$$
\left|p_{m}(x)-x^{-n}\right| \leqslant \frac{\rho^{n}}{(\rho+\rho / n)^{n} x^{n}} \leqslant \frac{1}{2 x^{n}}
$$

and

$$
x^{n} \cdot p_{m}(x) \geqslant \frac{1}{2} .
$$

Thus,

$$
\begin{align*}
\| x^{n}- & 1 / p_{m}(x) \|_{[\rho+\rho / n, 1]} \\
& =\left\|\left(p_{m}(x)-x^{-n}\right)\left(\frac{x^{2 n}}{x^{n} \cdot p_{m}(x)}\right)\right\|_{[\rho+\rho / n, 1]} \\
& \leqslant 2 \rho^{n} . \tag{4}
\end{align*}
$$

Suppose that $1 / q_{m}$ is the best approximation to x^{n} on $[\rho+\rho / n, 1]$ from the reciprocals of elements of Π_{m}. From the previous lemma we see that q_{m} is decreasing on $[0, \rho+\rho / n]$ and hence,

$$
\left\|x^{n}-1 / q_{m}(x)\right\|_{[0, \rho+\rho / n]} \leqslant \max .\left(\frac{1}{q_{m}(\rho+\rho / n)},(\rho+\rho / n)^{n}\right)
$$

From (4) and the above we have

$$
\begin{aligned}
\frac{1}{q_{m}(\rho+\rho / n)} & \leqslant\left\|x^{n}-1 / q_{m}(x)\right\|_{[\rho+\rho / n, 1]}+(\rho+\rho / n)^{n} \\
& \leqslant 2 \rho^{n}+(\rho+\rho / n)^{n} \leqslant(2+e) \rho^{n}
\end{aligned}
$$

and

$$
\left\|x^{n}-1 / q_{m}(x)\right\|_{[0,1]} \leqslant(2+e) \rho^{n} .
$$

Lemma 3. If there exists $p_{m} \in \Pi_{m}$ so that

$$
\left\|x^{2 n} \cdot p_{m}(x)-x^{n}\right\|_{[\rho+\rho / n, 1]} \leqslant \rho^{n}
$$

then there exists $q_{m} \in \Pi_{m}$ so that

$$
\left\|x^{2 n} \cdot q_{m}(x)-x^{n}\right\|_{[0,1]} \leqslant e \rho^{n} .
$$

Proof. Let $q_{m} \in \Pi_{m}$ satisfy

$$
\left\|x^{2 n} \cdot q_{m}(x)-x^{n}\right\|_{[\rho+\rho / n, 1]}=\min _{p_{m} \in \Pi_{m}}\left\|x^{2 n} \cdot p_{m}-x^{n}\right\|_{[\rho+\rho / n, 1]} .
$$

As in the proof of Lemma 1 , if $q_{m}(x)=\alpha x^{m}+\cdots$, then

$$
\left(x^{n} \cdot q_{m}(x)\right)^{\prime}=x^{n-1}(n+m)(-1)^{m}|\alpha| \prod_{i=1}^{m}\left(x-\alpha_{i}\right), \quad \alpha_{i} \in[\rho+\rho / n, 1] .
$$

It follows that $x^{n} \cdot q_{m}(x)$ is non-decreasing and positive on $[0, \rho+\rho / n]$ and that

$$
\left\|x^{n} \cdot q_{m}(x)-1\right\|_{[0, \rho+\rho / n]} \leqslant \max \left(1, \frac{\rho^{n}}{(\rho+\rho / n)^{n}}\right) \leqslant 1 .
$$

We complete the result by noting that this shows that

$$
\left\|x^{2 n} \cdot q_{n}(x)-x^{n}\right\|_{[0, \rho+\rho / n]} \leqslant(\rho+\rho / n)^{n} \leqslant e \rho^{n} .
$$

Proof of Theorem 1. Theorem 3 guarantees the existence of $p_{m} \in \Pi_{m}$ so that

$$
\left\|x^{2 n} \cdot p_{m}\left(x^{n}\right)-x^{n}\right\|_{[0,1]} \leqslant \frac{n}{(2 n-1)^{1 / 2}} \cdot \frac{(n+m)!(3 n-2)!}{(n-1)!(3 n+m-1)!}=\delta^{n} .
$$

Thus,

$$
\left\|x^{2 n} \cdot p_{m}(x)-x^{n}\right\|_{\{\delta+\delta / n, 1]} \leqslant \delta^{n}
$$

and by Lemma 2 , there exists $q_{m} \in \Pi_{m}$ so that

$$
\left\|x^{n}-1 / q_{m}(x)\right\|_{[0,1]} \leqslant(2+e) \delta^{n} .
$$

We now establish the lower bound. We know by Theorem 3, for all $p_{m} \in \Pi_{m}$

$$
\left\|x^{2 n} \cdot p_{m}(x)-x^{n}\right\|_{[0,1]} \geqslant \frac{1}{(2 n+1)^{1 / 2}} \cdot \frac{(n+m)!(3 n)!}{(n-1)!(3 n+m+1)!}=\rho^{n} .
$$

By Lemma 3,

$$
\begin{equation*}
\left\|x^{2 n} \cdot p_{m}(x)-x^{n}\right\|_{[\rho+\rho / n, 1]} \geqslant \frac{\rho^{n}}{e} . \tag{5}
\end{equation*}
$$

This, as we shall show, finishes the proof by implying that

$$
\left\|x^{n}-1 / p_{m}(x)\right\|_{[\rho+\rho / n, 1]} \geqslant \frac{\rho^{n}}{2 e} .
$$

This final inequality can be seen as follows.
Suppose, for $n>1$, that

$$
\left\|x^{n}-1 / p_{m}(x)\right\|_{[\rho+\rho / n, 1]}<\frac{\rho^{n}}{2 e} .
$$

Then, for $x \in[\rho+\rho / n, 1]$,

$$
\frac{1}{p_{m}(x)}>x^{n}-\frac{\rho^{n}}{2 e} \geqslant \frac{x^{n}}{2}
$$

and

$$
x^{n} \cdot p_{m}(x) \leqslant 2
$$

This, however, contradicts (5) by implying that

$$
\begin{aligned}
\| x^{2 n} & \cdot p_{m}(x)-x^{n} \|_{[\rho+\rho / n, 1]} \\
& =\|\left(x^{n}-1 / p_{m}(x)\right)\left(x^{n} \cdot p_{m}(x) \|_{[\rho+p / n, 1]}\right. \\
& <\frac{\rho^{n}}{e}
\end{aligned}
$$

References

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
2. D. J. Newman, Approximation to x^{n} by lower degree rational functions, J. Approx. Theory 27 (1979), 236-238.
3. Q. I. Rahman and G. Schmeisser, On rational approximation on the positive real axis, Canad. J. Math. 29 (1977), 180-192.
4. A. R. Reddy, Recent advances in Chebyshev rational approximation on finite and infinite intervals, J. Approx. Theory 22 (1978), 59-84.
5. A. Schönhage, Zur rationalen Approximierbarkeit von e^{-x} über $(0, \infty)$, J. Approx. Theory 7 (1973), 395-398.

[^0]: * Supported by the National Science and Engineering Research Council of Canada.
 † Present address: Mathematics Department, Dalhousie University, Haifax, Nova Scotia B3H 4H8, Canada.

